< Applied Biosystems StepOnePlus リアルタイム PCR システムの操作方法> Cycleave Human ALDH2 Typing Probe/Primer Set Ver.2 (製品コード CY403)

詳細は、装置に付属の取扱説明書をご確認ください。

- (1) Experiment Properties 画面の設定を行う。
 - Experiment Type : Quantification-Standard Curve
 - Reagent : Other
 - ・Include Melt Curve ☑を外す。

(2) Plate Setup の Define Target で Target Name を 2 種設定する。

Define Targets and Samples	Assign Targets and Samples					
Instructions: Define the targets to qua	antify and the s	amp	les to test in the	reaction plat		
Define Targets						
Add New Target Add Saved Target	Save Target Delete Target					
Target Name	Reporte	r	Quencher	Color		
allele1 (wild)	Rox	▼	None			
allele2 (mutant)	FAM	▼	None			

・FAM 標識プローブ検出は、Reporter を FAM、Quencher を None ・ROX 標識プローブ検出は、Reporter を ROX、Quencher を None

<u>ROX 標識プローブ</u>	<u>FAM 標識プローブ</u>
検出塩基	検出塩基
G (allele 1)	A (allele 2)

(3) Define Sample にて NC、2 種類の PC とサンプルを設定する。

(4) 作成した設定を用いて Plate Layout を設定する。
全ウェルに Allele 1 と Allele 2の2 Target を設定する。
各ウェルに該当する Sample を設定する。
Passive Reference は (none) にする。

(5) Instrument タブを選択し、反応条件を設定する。 Sample Volume を 25 μl に変更する。

- (6) 反応チューブをセットし、Start ボタンをクリックして反応を開始する。
- ※ 以降の操作で解析パラメータなどの設定変更を行ったら、Analyze ボタンをクリックし てください。再解析が行われ、変更が反映されます。(設定変更だけで Analyze ボタン をクリックしないと変更が反映されません。)
- (7) 反応終了後、Analysis 画面の Amplification Plot で増幅曲線を確認する。
- (8) Baseline がフラットになるように必要に応じて、Threshold を下記手順に従い、Manual で設定する。
 - 1. View Plate Layout で、NC、alele1 PC、allele2 PC 反応ウェルを選択する。
 - 2. Amplification Plot 画面上部の Plot Setting において、Graph Type:Linear、Plot Color:Sample を選択する。

3. Amplification Plot 画面下部の Options において、Target:allele2(mutant)を選択し、 FAM の増幅曲線を表示する。

4. Threshold ☑ Auto、☑ Auto Baseline の☑を外す。

5. Show: □ Threshold に Øを入れ、 増幅曲線に Threshold を表示する。

6. Graph に表示された Threshold にカーソルをあわせ、ドラッグしながら Threshold を非対応の Positive Control (allele1) *のシグナル以上になるように設定する。

Tet Type ARE HE Cyc	Graph Typ	Linear W	Port der	Sample		
Care current setting	t as the default					1
			1	P a	52	~ 1
	,	melfeation	The R			
100.010		Carlingan				_
90,000				/	-	
99,390			1	-		
79,960			1			
09.200			1			
Sause 3			1			
40.080			13.			
30,500		- /				
20.000 16.272.9	8354 mm	in a fine	-	-		-
10.000	n T	1				-
0	111111-171	1. YA 17	17001	10.00	11147	10.00
1.4.4	* 10 = 4	* * * *		* * *	* *	4.4.
		0	K M			

*: 左図の赤ライン

7. Amplification Plot 画面下部の Options において、Target: allele1 (wild) を選択し、 ROX の増幅曲線を表示する。

ROX のシグナルが FAM に比べ低く検出されるため、Plot Properties より Y Axis の Range ☑を外し、Scale を適宜調整する。

Save current settings as the default		General X Acts Y Acts	
Amailteator	> > a to 1	Label	
ec.ace ec.ace ec.ace ec.ace ec.ace ec.ace action ac		Calar Calar Calar Calar Calar Calar Calar Calar Stock make taken wiss Stock make taken wiss Stock make taken wiss Stock make taken wis	2
2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	ана и ана и и и и Осн	Auto-odovrtrange	

8. FAM と同様に、4~6と同様の操作を行う。

Threshold は、非対応の Positive Control (allele 2)*のシグナル以上 に設定する。 *: 左図青ライン 9. Analyze ボタンをクリックし、設定した Threshold で再解析を行う。

(9) View Well Table タブをクリックし、結果のデータを参照できる。

View Plate Layout View Well Table										
Select Wells With: - Select Item - 💌 - Select Item - 💌										
Show in Table V Group By V										
#	Well	Omit	Flag	Sample N	J Target Na	Task	Dyes	Ст	Ст Mean	CT SD
63	F3			Sample n	o.3 Allele1(Wild)	UNKNOWN	ROX-None	27.382	27.382	
64	F3			Sample n	o.3 Allele2(Mut	UNKNOWN	FAM-None	25.921	25.921	
65	F4			Sample n	o.2 Allele1(Wild)	UNKNOWN	ROX-None	34.509	34.509	
66	F4			Sample n	o.2 Allele2(Mut	UNKNOWN	FAM-None	33.404	33.404	
67	F5			Sample n	o.1 Allele1(Wild)	UNKNOWN	ROX-None	42.191	42.191	
68	F5			Sample n	o.1 Allele2(Mut	UNKNOWN	FAM-None	40.686	40.686	
69	F6			Allele2	Allele1(Wild)	UNKNOWN	ROX-None	Undetermi		
70	F6			Allele2	Allele2(Mut	UNKNOWN	FAM-None	18.974	18.974	
71	F7			Allele1	Allele1(Wild)	UNKNOWN	ROX-None	19.853	19.853	
72	F7			Allele1	Allele2(Mut	UNKNOWN	FAM-None	Undetermi		
73	F8									
74	F9			NC	Allele1(Wild)	UNKNOWN	ROX-None	Undetermi		
75	F9			NC	Allele2(Mut	UNKNOWN	FAM-None	Undetermi		
		-								

判定方法の詳細は装置の取扱説明書をご確認ください。

【Applied Biosystems7500 Fast Real-Time System を使用する場合】

Applied Biosystems7500 Fast Real-Time System を使用する場合は、StepOnePlus リアルタイム PCR システムの操作方法を、参考にご使用ください。

<変更点>

- ・ (5)の反応条件設定で、伸長時間を 25 秒に変更してください。(72℃、25 秒)
- (8)の操作を参考にして、Threshold、BaselineのAutoを解除してThresholdを非対応の Positive Controlのシグナル以上に設定してください。なお、7500 Fast Real-Time System では、FAM と ROX のシグナルがほぼ同じであるため、(8)の7. Sale 調整の操作は不要です。