文献

SmartChip® Real-Time PCR System

使用文献

Antibiotic Resistance Genes
  1. The antibiotic resistome of swine manure is significantly altered by association with the Musca domestica larvae gut microbiome. Wang, H. et al.
    ISME J. 11, 100-111 (2017).
    https://www.ncbi.nlm.nih.gov/pubmed/27458785
  2. Isothermal assay targeting class 1 integrase gene for environmental surveillance of antibiotic resistance markers. Stedtfeld, R. D. et al.
    J. Environ. Manage. 198, 213-220 (2017).
    https://www.ncbi.nlm.nih.gov/pubmed/28460328
  3. High-throughput profiling and analysis of antibiotic resistance genes in East Tiaoxi River, China. Zheng, J. et al.
    Environ. Pollut. 230, 648-654 (2017).
    https://www.ncbi.nlm.nih.gov/pubmed/28715769
  4. Application of Struvite Alters the Antibiotic Resistome in Soil, Rhizosphere, and Phyllosphere. Chen, Q.-L. et al.
    Environ. Sci. Technol. 51, 8149-8157 (2017).
    https://www.ncbi.nlm.nih.gov/pubmed/28628300
  5. Characterization and quantification of antibiotic resistance genes in manure of piglets and adult pigs fed on different diets. Lu, X.-M., Li, W.-F. & Li, C.-B.
    Environ. Pollut. 229, 102-110 (2017).
    https://www.ncbi.nlm.nih.gov/pubmed/28582673
  6. Abundance and distribution of antibiotic resistance genes in a full-scale anaerobic–aerobic system alternately treating ribostamycin, spiramycin and paromomycin production wastewater. Tang, M. et al.
    Environ. Geochem. Health (2017). doi:10.1007/s10653-017-9987-5
    https://www.ncbi.nlm.nih.gov/pubmed/28551881
  7. Continental-scale pollution of estuaries with antibiotic resistance genes. Zhu, Y.-G. et al.
    Nat. Microbiol. 2, 16270 (2017).
    https://www.ncbi.nlm.nih.gov/pubmed/28134918
  8. The resistome of farmed fish feces contributes to the enrichment of antibiotic resistance genes in sediments below baltic sea fish farms. Muziasari, W. I. et al.
    Front. Microbiol. 7, 1-10 (2017).
    https://www.ncbi.nlm.nih.gov/pubmed/28111573
  9. Does organically produced lettuce harbor higher abundance of antibiotic resistance genes than conventionally produced? Zhu, B., Chen, Q., Chen, S. & Zhu, Y. G.
    Environ. Int. 98, 152-159 (2017).
    https://www.ncbi.nlm.nih.gov/pubmed/27823798
  10. Influence of Manure Application on the Environmental Resistome under Finnish Agricultural Practice with Restricted Antibiotic Use. Muurinen, J. et al.
    Environ. Sci. Technol. 51, 5989-5999 (2017).
    https://www.ncbi.nlm.nih.gov/pubmed/28453251
  11. TCDD influences reservoir of antibiotic resistance genes in murine gut microbiome. Stedtfeld, R. D. et al.
    FEMS Microbiol. Ecol. 93, 3435–40 (2017).
    https://www.ncbi.nlm.nih.gov/pubmed/28475713
  12. Long-term field application of sewage sludge increases the abundance of antibiotic resistance genes in soil. Chen, Q. et al.
    Environ. Int. 92–93, 1-10 (2016).
    https://www.ncbi.nlm.nih.gov/pubmed/27043971
  13. Aquaculture changes the profile of antibiotic resistance and mobile genetic element associated genes in Baltic Sea sediments. Muziasari, W. I. et al.
    FEMS Microbiol. Ecol. 92, fiw052 (2016).
    https://www.ncbi.nlm.nih.gov/pubmed/26976842
  14. Can chlorination co-select antibiotic-resistance genes? Lin, W., Zhang, M., Zhang, S. & Yu, X.
    Chemosphere 156, 412-419 (2016).
    https://www.ncbi.nlm.nih.gov/pubmed/27192478
  15. Antimicrobial resistance Dashboard application for mapping environmental occurrence and resistant pathogens. Stedtfeld, R. D. et al.
    FEMS Microbiol. Ecol. 92, 1-9 (2016).
    https://www.ncbi.nlm.nih.gov/pubmed/26850162
  16. High-throughput profiling of antibiotic resistance genes in drinking water treatment plants and distribution systems. Xu, L. et al.
    Environ. Pollut. 213, 119-126 (2016).
    https://www.ncbi.nlm.nih.gov/pubmed/26890482
  17. Influence of Soil Characteristics and Proximity to Antarctic Research Stations on Abundance of Antibiotic Resistance Genes in Soils. Wang, F. et al.
    Environ. Sci. Technol. 50, 12621-12629 (2016).
    https://www.ncbi.nlm.nih.gov/pubmed/27797533
  18. Long-Term Impact of Field Applications of Sewage Sludge on Soil Antibiotic Resistome. Xie, W.-Y. et al
  19. Changes in antibiotic concentrations and antibiotic resistome during commercial composting of animal manures. Xie, W.-Y. et al.
    Environ. Pollut. 219, 182-190 (2016).
    https://www.ncbi.nlm.nih.gov/pubmed/27814534
  20. Antibiotic Resistome and Its Association with Bacterial Communities during Sewage Sludge Composting. Su, J. Q. et al.
    Environ. Sci. Technol. 49, 7356-7363 (2015).
    https://www.ncbi.nlm.nih.gov/pubmed/27934260
  21. Increased levels of antibiotic resistance in urban stream of Jiulongjiang River, China. Ouyang, W. Y., Huang, F. Y., Zhao, Y., Li, H. & Su, J. Q.
    Appl Microbiol. Biotechnol. 99, 5697-5707 (2015).
    https://www.ncbi.nlm.nih.gov/pubmed/25661810
  22. High Throughput Profiling of Antibiotic Resistance Genes in Urban Park Soils with Reclaimed Water Irrigation. Wang, F.-H. et al.
    Environ. Sci. Technol. 48, 9079-9085 (2014).
    https://www.ncbi.nlm.nih.gov/pubmed/25057898
  23. High-throughput quantification of antibiotic resistance genes from an urban wastewater treatment plant. Karkman, A. et al.
    FEMS Microbiol. Ecol. 92, 1-7 (2016).
    https://www.ncbi.nlm.nih.gov/pubmed/26832203
Cancer
  1. Selective activation of miRNAs of the primate-specific chromosome 19 miRNA cluster (C19MC) in cancer and stem cells and possible contribution to regulation of apoptosis. Nguyen, P. N. N., Huang, C.-J., Sugii, S., Cheong, S. K. & Choo, K. B.
    J. Biomed. Sci. 24, NA copy number alterations in c20 (2017).
    https://www.ncbi.nlm.nih.gov/pubmed/28270145
  2. Targeted genomic screen reveals focal long non-coding RNA copy number alterations in cancer. Volders, P.-J. et al.
    bioRxiv 113316 (2017). doi:10.1101/113316
  3. Melanoma addiction to the long non-coding RNA SAMMSON. Leucci, E. et al.
    Nature 531, 518-522 (2016).
    https://www.ncbi.nlm.nih.gov/pubmed/27008969
  4. Hypoxia-responsive miR-210 promotes self-renewal capacity of colon tumor-initiating cells by repressing ISCU and by inducing lactate production. Ullmann, P. et al.
    Oncotarget 7, (2016).
    https://www.ncbi.nlm.nih.gov/pubmed/27589845
  5. Long non-coding RNA expression pro fi ling in the NCI 60 cancer cell line panel using. Mestdagh, P., Lefever, S., Volders, P. & Derveaux, S.
    Sci. Data 1-6 (2016). doi:10.1038/sdata.2016.52
    https://www.ncbi.nlm.nih.gov/pubmed/27377824
  6. Defining a population of stem-like human prostate cancer cells that can generate and propagate castration-resistant prostate cancer. Chen, X. et al.
    Clin. Cancer Res. 22, 4505-4516 (2016).
    https://www.ncbi.nlm.nih.gov/pubmed/27060154
  7. Intraindividual Temporal miRNA Variability in Serum, Plasma, and White Blood Cell Subpopulations. Ammerlaan, W. & Betsou, F.
    Biopreserv. Biobank. 14, bio.2015.0125 (2016).
    https://www.ncbi.nlm.nih.gov/pubmed/27096687
  8. Panx3 links body mass index and tumorigenesis in a genetically heterogeneous mouse model of carcinogen-induced cancer. Halliwill, K. D. et al.
    Genome Med. 8, 1-17 (2016).
    https://www.ncbi.nlm.nih.gov/pubmed/27506198
  9. Molecular Characterization of the Oncogenic Potential and Mechanisms of Cytomegalovirus Infecting Mrc-5 Cells. Abdulamir, A. S.
    Iraqi J. Med. Sci. 14, (2016).
  10. Identification of Critical Biomarkers Responsive to Anti-Autophagy Therapies for Pancreatic Ductal Adenocarcinoma through a Performance Analysis of miRNA Platforms. Sardi, S. H., Glassner, B. J., Chang, J. R. & Yim, S. H.
    J. Bioanal. Biomed. 1 (2014). doi:10.4172/1948-593X.S10-001
  11. Evaluation and validation of a robust single cell RNA-amplification protocol through transcriptional profiling of enriched lung cancer initiating cells. Rothwell, D. G. et al.
    BMC Genomics 15, 1129 (2014).
    https://www.ncbi.nlm.nih.gov/pubmed/25519510
  12. MicroRNA-5p and -3p co-expression and cross-targeting in colon cancer cells. Choo, K. B., Soon, Y. L., Nguyen, P. N. N., Hiew, M. S. Y. & Huang, C.-J.
    J. Biomed. Sci. 21, 95 (2014).
    https://www.ncbi.nlm.nih.gov/pubmed/25287248
  13. Oxidative stress diverts trna synthetase to nucleus for protection against dna damage. Wei, N. et al.
    Mol. Cell 56, 323–332 (2014).
    https://www.ncbi.nlm.nih.gov/pubmed/25284223
miRNA
  1. Intraindividual Temporal miRNA Variability in Serum, Plasma, and White Blood Cell Subpopulations. Biopreserv. Ammerlaan, W. & Betsou, F.
    Biobank. 14, bio.2015.0125 (2016).
    https://www.ncbi.nlm.nih.gov/pubmed/27096687
  2. Differentially expressed microRNAs in maternal plasma for the noninvasive prenatal diagnosis of down syndrome (Trisomy 21). Kamhieh-Milz, J. et al.
    Biomed Res. Int. 2014, (2014).
    https://www.ncbi.nlm.nih.gov/pubmed/25478570
  3. Evaluation of quantitative miRNA expression platforms in the microRNA quality control (miRQC) study. Mestdagh, P. et al.
    Nat. Methods 11, 809–815 (2014).
    https://www.ncbi.nlm.nih.gov/pubmed/24973947
  4. Glucocorticoids suppress T cell function by up-regulating microRNA-98. Davis, T. E., Kis-Toth, K., Szanto, A. & Tsokos, G. C.
    Arthritis Rheum. 65, 1882-1890 (2013).
Others
  1. RNA-Seq versus oligonucleotide array assessment of dose-dependent TCDD-elicited hepatic gene expression in mice. Nault, R., Fader, K. A. & Zacharewski, T.
    BMC Genomics 16, 373 (2015).
    https://www.ncbi.nlm.nih.gov/pubmed/25958198
  2. Single cell genomic study of Dehalococcoidetes species from deep-sea sediments of the Peruvian Margin Kaster et al.
    ISME doi:10.1038/ismej.2014.24 https://www.ncbi.nlm.nih.gov/pubmed/24599070
  3. Chemokine 25-induced signaling suppresses colon cancer invasion and metastasis.Chen et al.
    J.Clin.Invest. doi:10.1172/JCI62110
    https://www.ncbi.nlm.nih.gov/pubmed/22863617
  4. Toward the blood-borne miRNome of human diseases.
    Keller et al.
    Nat. Methods doi:10.1038/nmeth.1682
    https://www.ncbi.nlm.nih.gov/pubmed/21892151
  5. Peripheral blood mononuclear cell gene expression profiles predict poor outcome in idiopathic pulmonary fibrosis.
    Herazo-Maya et al.
    Sci. Transl. Med. doi: 10.1126/scitranslmed.3005964
    https://www.ncbi.nlm.nih.gov/pubmed/24089408
  6. Chinnaiyan, White Paper: Comparison of Gene Expression Data on Three Platforms
  7. High-Throughput Nanovolume qPCR - GEN Article
  8. Duran et al., 2011 AACR poster
  9. Bohenzky et al., 2011 Poster