Fluorescent Protein Vectors

Living Colors® vectors for easy cloning, expression, and subcellular localization applications

- Visualize a variety of targets with our subcellular localization vectors
- Establish dual-color stable cell lines with our cloning vectors using different resistance cassettes
- Efficient parallel cloning of fusion proteins with our In-Fusion[™] Ready prelinearized vectors

Clontech's **Living Colors Fluorescent Proteins** present a powerful tool for many applications in biological research. Our fluorescent protein collection possesses distinct spectral properties, offering a full spectrum of colors. These proteins can be used in multicolor applications to simplify visualization of different cellular events (1).

Monomeric Subcellular Localization Vectors

Our DsRed-Monomer and AcGFP1

fluorescent proteins are ideal tools for monitoring gene expression and intracellular protein trafficking. Because of their distinct spectra, these fluorescent proteins can be used for multicolor labeling and direct visualization applications (Figure 1). Moreover, due to their monomeric character, it is possible to localize AcGFP1 and DsRed-Monomer to compartments and structures that can only be targeted with non-oligomerizing fusion tags. Both DsRed-Monomer and AcGFP1 proteins are extremely stable and are ideal for real-time subcellular localization studies.

We offer several DsRed-Monomer and AcGFP1 subcellular localization vectors encoding fusion proteins that localize to various subcellular regions (Table I). With these vectors you can visualize biological processes as they occur and also easily track your protein of interest to a specific subcellular organelle or structure.

The growing list of AcGFP1 and DsRed-Monomer vectors give you greater flexibility to simultaneously label multiple organelles and/or proteins of interest. Other promising applications include functional analysis of organelle trafficking, receptor biology, and signal transduction.

Figure 1. Multicolor visualization of subcellular structures using DsRed-Monomer and AcGFP1 localization vectors. HeLa cells were transfected simultaneously with different combinations of our Living Colors Subcellular Localization Vectors (500 ng/vector) using a lipid-based transfection method. 36 hr posttransfection, cells were fixed using 4% paraformaldehyde and visualized using a Zeiss[®] Axioskop[™] fluorescence microscope. Panel A. pDsRed-Monomer-Golgi and pAcGFP1-Mem. Panel B. pDsRed-Monomer-Golgi and pAcGFP1-Tubulin. Panel C. pDsRed-Monomer-F and pAcGFP1-Endo. Panel D. pDsRed-Monomer-Actin and pAcGFP1-Endo.

Table I: Exa	amples of Living Co	olors Subcellular Loca	alization Vectors ¹
Vector	Target Structure	Localization Tag or Gene	Applications
pDsRed-Monomer-Golgi	Transmedial region of the Golgi apparatus	Targeting sequence of human β 1,4-galactosyl- transferase (2)	 Study organelle dynamics and protrusions Track morphology and intracellular distribution
pDsRed-Monomer-Actin	Actin filaments	Human cytoplasmic β-actin (3)	Study cytoskeletal dynamics
DsRed-Monomer F	Inner leaflet of the plasma membrane	Farnesylation sequence from c-Ha-Ras (4)	 Study membrane dynamics Monitor membrane- associated changes
pAcGFP1-Tubulin	Microtubule network	Human α -tubulin (5)	Study cytoskeletal dynamics
pAcGFP1-Endo	Endosomal compartment	Human <i>rho</i> B GTPase (6)	Study endosome dynamics
pAcGFP1-Mem	Plasma membrane	Membrane-targeting signal of neuromodulin (7)	 Study membrane dynamics Monitor membrane- associated changes
pAcGFP1-Actin	Actin filaments	Human cytoplasmic β-actin	Study cytoskeletal dynamics
pAcGFP1-Nuc	Nucleus	Three tandem repeats of nuclear localization signal (NLS) of the SV40 large T-antigen	 Visualize nucleus Study nuclear import and export Monitor cell growth and cell division
pAcGFP1-Golgi	Transmedial region of the Golgi apparatus	Targeting sequence of human β 1,4-galactosyltransferase	 Study organelle dynamics and protrusions Track morphology and intracellular distribution
pAcGFP1-Mito	Mitochondria	Targeting sequence from subunit VIII of human cytochrome c oxidase	Track mitochondrial dynamics

1 This table contains a partial list of our Living Colors subcellular localization vectors. For a complete list, see www.clontech.com

Fluorescent Protein Vectors...continued

Living Colors vectors for easy cloning, expression, and subcellular localization applications

Develop Dual-Color Stable Cell Lines

Our pDsRed-Monomer-Hyg-N1/C1 and pAcGFP1-Hyg-N1/C1 vectors (Figure 2), make it easy to establish stable cell lines coexpressing AcGFP1 and DsRed-Monomer fusion proteins by selecting with both hygromycin and neomycin. Target genes of interest can be easily transferred from our standard pDsRed-Monomer-N1/C1 and pAcGFP1-N1/C1 vectors containing the neomycin selection cassette into the corresponding hygromycin-resistant (Hygr) N1 or C1 vectors (8), because the two vector sets contain identical multiple cloning sites. This allows you to coexpress two different Living Colors fusion proteins in the same cell.

In-Fusion Ready Prelinearized Vectors

To simplify the construction and testing of fluorescent protein fusions, we offer prelinearized versions of our popular DsRed-Monomer-N1/C1 and AcGFP1-N1/C1 cloning vectors for fast, efficient PCR cloning. Simply use appropriate gene-specific PCR primers encoding 15 nucleotide 5' extensions homologous to the ends of these prelinearized vectors to amplify your gene of interest. Since all four prelinearized vectors are identical at the site of linearization, you can use the same PCR product for cloning directly into any one of them; saving time and allowing parallel cloning of fusion proteins with different colors at either the N- or C-terminus. This is important when the ability of a protein of interest to function either as an N- or C-terminal fusion is unknown.

To demonstrate the utility of these prelinearized vectors, α -actinin was amplified by PCR using appropriate primers incorporating the relevant 5' extensions. The PCR product was then efficiently cloned into all four prelinearized vectors. As shown in Figure 3, all four constructs expressed the properly functioning fusion protein.

Figure 2. Hygromycin DsRed-Monomer and AcGFP1 expression vectors. Vector maps of our DsRed-Monomer and pAcGFP1 Hyg-N1 (**Panel A**) and Hyg-C1 (**Panel B**) mammalian expression vectors for fusion applications. Each vector contains a hygromycin selection cassette. These vectors can be used together with our standard N1/C1 vectors containing the neomycin selection cassette to establish double-stable cell lines expressing two different Living Colors proteins.

Figure 3. Cloning of PCR-amplified α-actinin directly into four different In-Fusion Ready prelinearized DsRed-Monomer and AcGFP1 vectors. The gene for α-actinin (1,600 bp) was amplified by PCR and immediately cloned into four different prelinearized DsRed-Monomer N1/C1 and AcGFP1 N1/C1 vectors using the In-Fusion cloning method. All four recombinant vectors were transfected into HeLa cells using a lipid-based transfection agent. 36 hr posttransfection, cells were fixed using 4% paraformaldehyde and visualized using a Zeiss Axioskop fluorescence microscope. Panel A. α-actinin-AcGFP1-C1. Panel B. α-actinin-AcGFP1-N1. Panel C. α-actinin-DsRed-Monomer-C1. Panel D. α-actinin-DsRed-Monomer-N1.

Fluorescent Protein Vectors...continued

Fruit Fluorescent Proteins-a new spectrum of fluorescent proteins

Α

В

- Broad emission range (553–649 nm)
- Easy detection with DsRed antibodies
- Highly flexible licensing terms

Clontech is distributing vectors encoding several of the **Fruit Fluorescent Proteins**, developed in Dr. Roger Tsien's lab (9–11), which are already well-characterized and recognized in the literature. The Fruit Fluorescent Proteins are mutants derived from mRFP1, a monomeric mutant of DsRed, by directed mutagenesis (12). We are offering mCherry in four different vector formats, plus source vectors for five additional Fruit Fluorescent Proteins, mRaspberry, mPlum, mBanana, mOrange, and mStrawberry, through our licensing program.

Detection with DsRed Antibodies

Clontech's Living Colors DsRed Monoclonal and Polyclonal Antibodies (Cat. Nos. 632392, 632393, & 632496) can be used to detect the Fruit Fluorescent Proteins by Western blot analysis (Figure 4).

mCherry Fusion Constructs

We have successfully tested mCherry fused to several proteins, including actin and tubulin (Figure 5). Other fusion proteins containing mCherry have been reported in *Arabidopsis* (13), zebrafish (14), *E. coli* (15), HIV virions (16), and yeast (17). These fusions have also been used for quantitative imaging techniques such as fluorescence resonance energy transfer (FRET; 18).

Stable mCherry Cell Lines

We have established three stably-transfected HEK 293 cell lines with different levels of mCherry expression (as measured by flow cytometry). Transfected cells were observed to grow at a rate similar to nontransfected control cells, without increased cell death, as determined by visual inspection.

Figure 4. Western blot detection of Fruit Fluorescent Proteins. HEK 293 cells were transiently transfected with mammalian expression vectors encoding the mFruits listed below, and lysates from the equivalent of 35,000 cells/well were analyzed by Western blot. Panel A. DsRed Monoclonal Antibody (1:500). Panel B. DsRed Polyclonal Antibody (1:1,000). Lane 1: mPlum. Lane 2: mStrawberry. Lane 3: mRaspberry. Lane 4: mCherry. Lane 5: mOrange. Lane 6: mBanana. Lane 7: Control (untransfected cells). Lane 8: DsRed-Express. Lane 9: AcGPF1.

Figure 5. mCherry fusion constructs. HeLa cells were transiently transfected, via a lipid-based method, with mammalian expression vectors encoding mCherry fused to either human cytoplasmic β -actin (Panel A) or tubulin (Panel B). Cells were fixed using 4% paraformaldehyde and imaged 36 hr posttransfection with a 40X objective on a Zeiss Axioskop microscope using the 575/50, 610, 640/50 filter set.

The Fruit Fluorescent Proteins will expand your experimental opportunities. These proteins offer a wide emission range, two antibodies for detection, and demonstrated stable expression—and they perform successfully in numerous fusion applications.

References

- BD Living Colors[™] DsRed-Express (January 2005) *Clontechniques* XX(1):4–5.
- Watzele, G. & Berger, E. G. (1990) Nucleic Acids Res. 18(23):7174.
- Ponte, P. et al. (1984) Nucleic Acids Res. 12(3):1687–1696.
- 4. Aronheim, A. et al. (1994) Cell 78(6):949-961.
- 5. de Hostos, E., unpublished data.
- Adamson, P. et al. (1992) J. Cell Biol. 119(3):617–627.
- Skene, J. H. P. & Virag, I. (1989) J. Cell. Biol. 108(2):613–625.
- Gritz, l. & Davies, J. (1983) Gene 25(2–3):179–188.
- Shaner, N. C. *et al.* (2004) *Nature Biotechnol.* 22(12):1567–1572.
- Wang, L. et al. (2004) Proc. Nat. Acad. Sci. 101(48):16745–16749.
- 11. Shu, X. et al. (2006) Biochemistry 45(32):9639–9647.
- Campbell, R. E. et al. (2002) Proc. Nat. Acad. Sci. 99(12):7877–7882.
- Song, L. et al. (2007) Proc. Nat. Acad. Sci. 104(13):5437–5442.
- 14. Pisharath, H. *et al.* (2007) *Mech. Dev.* **124**(3):218–229.
- Pradel, L. et al. (2007) Biochem. Biophys. Res. 353(2):493–500.
- Campbell, E. M. *et al.* (2007) Virology 360(2):286–293.
- 17. Snaith, H. A. *et al.* (2005) *EMBO J.* **24**(21):3690–3699.
- Anderson, K. I. *et al.* (2006) *Cytometry A.* 69(8):920–929

Please see the next page for information on purchasing Living Colors® & Fruit Fluorescent Protein Vectors

Fluorescent Protein Vectors...continued

Living Colors¹ & Fruit Fluorescent Protein Vectors

Product	Size	Cat. No.
pDsRed-Monome	r-Actin Vector 20 µg	632479
pDsRed-Monome	r-Golgi Vector 20 µg	632480
pDsRed-Monome	r-F Vector 20 µg	632493
pDsRed-Monome	r-Hyg-N1 Vector 20 µg	r 632494
pDsRed-Monome	r-Hyg-C1 Vector 20 µg	632495
pDsRed-Monome	r-N1 Vector 20 µg	632465
pDsRed-Monome	r-C1 Vector 20 µg	632466
pDsRed-Monome	r Vector 20 µg	632467
pAcGFP1-Tubulin	Vector 20 µg	632488
pAcGFP1-Endo Ve	ector 20 µg	632490
pAcGFP1-Mem Ve	ector 20 µg	632491
pAcGFP1-Hyg-N1	Vector 20 µg	632489
pAcGFP1-Hyg-C1	Vector 20 µg	632492
pAcGFP1-N Vecto	or Set 20 µg x 3	632485
pAcGFP1-C Vecto	or Set 20 µg x 3	632486
pAcGFP1-1 Vecto	r 20 µg	632497
pAcGFP1-N2 Vect	tor 20 μg	632483
pAcGFP1-N3 Vect	tor 20 µg	632484

Product	Size	Cat. No.
pAcGFP1-C2 Vec	tor	
	20 µg	632481
pAcGFP1-C3 Vec	tor	
	20 µg	632482
pAcGFP1 Vector		
	20 µg	632468
pAcGFP1-C1 Vec	tor	
	20 µg	632470
pAcGFP1-N1 Vec	tor	
	20 µg	632469
AcGFP1 Vector S	et	
	20 µg x 3	632426
pIRES2-AcGFP1	/ector	
	20 µg	632435
pAcGFP1-Actin V	ector	
	20 µg	632453
pAcGFP1-Golgi V	ector	
	20 µg	632464
pAcGFP1-Mito Ve	ector	
	20 µg	632432
pAcGFP1-Nuc Ve	ctor	
	20 µg	632431
pLP-AcGFP1-C A	cceptor Vector	
	20 µg	632471
pLPS-AcGFP1-N	Acceptor Vector	r
	20 µg	632472
pDsRed-Monome	er-N In-Fusion R	eady Vector
	1 µg	632498
pDsRed-Monome	er-C In-Fusion Re	eady Vector
	1 µg	632499
pAcGFP1-N In-Fu	ision Ready Vec	tor
	1 µg	632501
pAcGFP1-C In-Fu	sion Ready Vect	or
	1 µg	632500

Product	Size	Cat. No.
pmCherry Vector	20 µg	632522
pmCherry-N1 Vec	tor	
	20 µg	632523
pmCherry-C1 Vec	tor	
	20 µg	632524
pmCherry-1 Vecto	or	
	20 µg	632525
pmRaspberry Vec	tor	
	20 µg	632526
pmPlum Vector	20 µg	632527
pmBanana Vecto	r	
	20 µg	632528
pmOrange Vector	r	
	20 µg	632529
pmStrawberry Ve	ctor	
	20 µg	632530
Living Colors DsR	ed Monoclonal	Antibody
	20 µl	632393
	200 µl	632392
Living Colors DsR	ed Polyclonal A	ntibody
	100 µl	632496

1 This table contains a partial list of Living Colors vectors. For a complete list, see www.clontech.com

Notice to Purchaser

Please see the DsRed-Monomer, CMV Sequence, Creator[™] and Creator[™] Access Services, Fruit Fluorescent Protein Products, and Living Colors® licensing statements on page 33.

フレー	-71					
_	mBanana	mOrange	mStrawberry	mCherry	mRaspberr	ry mPlum
白色光下		۲	•	•		
JV照射下						
mCherryを A	用いた細胞	图内局在化(B	の確認例	mCherryとヒI mCherryとヒI との融合タン/ を作製し、リポ クトしました、デ ホルムアルデ	erry融合タン) 細胞内局在化 ^{βアクチン(A)、ま ^{ペク質を発現する『 ノーム法を用いてト 細胞は、形質転換:}}	パク質による の確認 またはチューブリン 捕乳類細胞用ベ・ leLa細胞にトラン 36時間後に4%0
				575/50、610、 ました。	<ドで固定し、Zeis 640/50フィルター	ss Axioskop顕術 - セットを用いて着
) 鮮や で生 の高い適合 かはGFPに似れ でRET解析い ラインアッフ ンパク質の特性	かな 全量体 学校 学校 た緑色の自家蛍 こも使用可能 プ 生 た 次及長(nm)	たまたまつので、長派	575/50、610、 ました。	ニドで固定し、Zeis 640/50フィルター	ss Axioskop顕得 -セットを用いて着 ひに 最 シークリングをお さにはすべて単量体で 融合タンパクタ
・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・) の高い適名 かはGFPに似れ 宗RET解析に ラインアッフ シパク質の特性	かな 全 生 生 体 に も 有 用 で た 緑 色の自家 蛍 こ も 使 用 可 能 こ も 使 用 可 能 こ も 使 用 可 能 こ も 使 用 可 能 こ も 使 用 可 能 こ も 有 用 で 能 る を の 自 家 蛍 こ も で 用 可 能 こ も 使 用 可 能 こ も 使 用 可 能 こ も 使 用 可 能 こ も 有 用 で た 緑 色の自家 蛍 こ も 有 用 で 能 こ も 有 用 で 能 こ も 有 用 で 能 こ も 有 用 で 能 こ も 有 用 で 能 こ も 有 用 で 能 こ も 有 用 で 能 こ も 有 用 で 能 こ も 使 用 可 能 こ も 使 用 可 能 こ も 使 用 可 能 こ も 使 用 可 能 こ も 使 用 可 能 こ も 使 用 可 能 こ も 使 用 可 能 こ も 使 用 可 能 こ も 使 用 可 能 こ も 使 用 可 能 こ も 使 用 可 能 こ ち で ろ て ま こ も 使 用 可 能 こ ち ろ 二 ち ち こ も た 日 の た る て ち て た ち ち こ も た 日 て う た ち ち て ち ち ち こ も で 日 て か た ち で ち て た ち ち て ち ち ち て ち た ち ち て ち で ち ち て ち ち ち ち ち ち て ち た ち ち ち て ち ち ち ち ち ち ち ち ち ち ち ち ち	、 、 、 、 、 、 、 、 、 、 、 、 、	575/50、610、 ました。	ニドで固定し、Zeis 640/50フィルター ブ質作第 メンパク質でのモ は、パク質でのモ は、パク質でのモ 「ボーター としての利用 Fair	as Axioskop顕得 -セットを用いて着 シーセットを用いて着 こころリングをお着 きはすべて単量体で さしての利用
・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・) の高い適合) in vivo 写 物はGFPに似が 定 RET解析(ラインアッコ ンパク質の特性 個	かな 全 かな 生 に た 緑色の自家 蛍 こ も 使 用 可 能 に も 有 用 で ポ こ も 使 用 可 能 で 、 緑色の自家 蛍 こ も 使 用 可 能 で 。 で 、 、 緑色の自家 蛍 こ も 使 用 可 能 で 。 の 音 、 、 番 も の 日 家 戦 こ も 使 用 可 能 で 。 の 音 家 低 こ も 使 用 可 能 で 。 の 音 家 低 こ も 有 用 た 緑 色 の 自 家 蛍 こ も 有 用 で 能 こ も 有 用 で 能 こ も 有 用 で 能 こ も 有 用 で 能 こ も 有 用 で 能 こ も 使 用 可 能 こ ち 有 用 で 能 こ も 使 用 可 能 こ ち で ま 、 こ も 使 用 可 能 こ ち で ま 、 こ も 使 用 可 能 こ ち う 日 家 、 こ も 使 用 可 能 こ ち ろ 日 の ま 、 、 ち ら て の い い い い い い こ ち ろ こ ち ろ こ ち ろ こ ろ こ ち ろ こ ち ろ こ ろ こ ち ろ こ ろ こ ち ろ こ ち ろ こ ろ こ ち こ ち う こ ち ち こ ろ こ ち ろ こ ち こ ち こ ち ち ち こ ち こ ち ち て う ち ち こ ち ち う こ ち ち こ ち う こ ち ち こ ち ち こ ち ち こ ち ち こ ろ こ ち ち ち こ ろ こ ち こ ち こ ろ こ ち こ ち ち こ ろ こ ち こ ろ こ ち こ ち こ ち こ ち こ ち こ ち こ ち こ ち ち ち こ ち こ ち ち ち ち ち ち ち ち ち ち ち ち ち	こので、長派 光を持つので、長派 相対的な 第 日対的な 第 日対的な 日対的な 日対的な 日対的な 日対的な 日対的な 日対的な 日対的な 日対のな 日対のな <td>575/50、610、 ました。 安長赤色蛍光:</td> <td>ニドで固定し、Zeis 640/50フィルター ゴロングでのモ タンパク質でのモ は、パク質でのモ レポーター としての利用 Fair ++ Excellent</td> <td>as Axioskop顕得 -セットを用いて着 こまなリングをお さにすべて単量体で 融合タンパクラ としての利用</td>	575/50、610、 ました。 安長赤色蛍光:	ニドで固定し、Zeis 640/50フィルター ゴロングでのモ タンパク質でのモ は、パク質でのモ レポーター としての利用 Fair ++ Excellent	as Axioskop顕得 -セットを用いて着 こまなリングをお さにすべて単量体で 融合タンパクラ としての利用
すた すた すた すた すた すた すた すた でた また でた なた なた でた なた なた でた なた なた なた なた なた なた なた なた なた な	(鮮や、 、で単 の高い適合 かはGFPに似; でRET解析(ラインアッフ シパク質の特性 はる 、 と、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、	かな 全 全 体 に も 有 た 緑色の自家蛍 こ も 使 用 可 能 た 緑色の自家蛍 こ も 使 用 可 能 た 緑色の自家蛍 こ も 使 用 可 能 た 緑色の自家蛍 こ も 使 用 可 能 た 緑色の自家蛍 こ も 使 用 可 能 た 緑色の自家蛍 こ も 使 用 可 能 た 緑色の自家蛍 こ も 使 用 可 能 こ も 使 用 可 能 こ も 使 用 可 能 こ も 使 用 可 能 こ も 有 用 た 緑 色の自家蛍 こ も 有 用 で ま し こ も 使 用 可 能 こ も た 月 可 能 こ も た 月 可 能 こ も 使 用 可 能 こ も 使 用 可 能 こ ち て も 使 用 可 能 こ ち 石 用 で ま こ も 使 用 可 能 こ ち て も で ま こ も 使 用 可 能 こ ち て ち て も で ま い い い い い い い い た ち ろ ろ ら ら ろ ろ ろ ろ ろ ろ ろ ろ ろ ろ ろ ろ ろ	、 洗タン 融合タ、 米を持つので、長派 、 相対的な 蛍光強度 「 早前 「 上 たた に 、 、 、 、 、 、 、 、 、 、 、 、 、	575/50、610、 ました。	ニドで固定し、Zeis 640/50フィルター 「「「「「「」」」」」」 タンパク質でのモ は、アクロージングのでの 構成 レポーター としての利用 Fair ++++++ Excellent ++++++ Good	as Axioskop顕得 -セットを用いて着 ここタリングをお さにはすべて単量体で 融合タンパクタ としての利用
す す す す つ 加 つ 加 二 の の 職 器 や 植 物 の に 職 器 や 植 物 の に 器 や 植 物 の に 器 や 植 物 の に 器 や 植 物 の に 器 や 植 物 の に 器 や 植 物 の に 器 や 植 物 の に 器 や 植 物 の に 器 や 植 物 の に 器 や 植 物 の に 器 や 植 物 の に 器 や 植 物 の に 器 や 植 物 の に 器 や 植 物 の に 器 や 植 物 の に 器 や 植 物 の に 器 や 植 物 の に 器 や 植 物 の に 器 や 植 物 の に い ー ツ 当 光 の の に い ー ツ 当 光 の に い ー ツ 当 光 の に い ー ツ 当 光 の に い こ の に い し 日 方 広 体 を こ の に い ー ツ 当 光 の こ の に い し 一 ツ 当 光 の つ の に の こ の こ の の に い ー の 当 、 の の に い ー の 当 、 の の に の い ー の 当 、 ろ の い 一 の 当 、 ろ の い 一 の 当 光 ろ つ の 一 の 当 光 う つ い 一 の 当 、 ろ の の に の の こ の の の こ の の の の こ の の い ー の 当 、 ろ の ら の い ー つ 当 二 の ら い ら の い っ の い っ の い っ の い っ の い っ の い っ の い っ い っ い っ の ら い ら の い い ら い ら い い こ こ い ら い い こ こ い の い い い こ い の こ の い こ の い の こ の こ の こ の こ の こ の こ の こ の こ の こ の こ の こ の こ の こ の こ の こ	(鮮や、で単 の高い適合 かはGFPに似た FRET解析に ラインアッフ ロパク質の特性 に、 マリパク質の特性 に、 マリパク質の特性 に、 マリパク質の特性 に、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、	かな 全 全 体 に を た 緑 色の自家 蛍 た 緑 色の自家 蛍 こ も 使 用 可 能 こ も 使 用 可 能 こ も 使 用 可 能 こ も 使 用 可 能 こ も 使 用 可 能 こ も 使 用 可 能 こ も 使 用 可 能 こ も 使 用 可 能 こ も 使 用 可 能 こ も 使 用 可 能 こ も 使 用 可 能 こ も 使 用 可 能 こ も 有 用 た 緑 色の自家 蛍 こ も 有 用 で 能 こ も 有 用 で 能 こ も 有 用 こ も 有 用 こ も 使 用 可 能 こ も 使 用 可 能 こ も 使 用 可 能 こ も 使 用 可 能 こ も 使 用 可 能 こ も 使 用 可 能 こ も 使 用 可 能 こ も 使 用 可 能 こ も 使 用 可 能 こ も 使 用 可 能 こ も 使 用 可 能 こ も 使 用 可 能 こ も 使 用 可 能 こ ら 日 の に も た う 日 の い い い い い こ ち ら 2 い い い こ ち ら 2 こ ら ら ら こ ら ら ら こ ら ら ら こ ら ら ら こ ら ら ら こ ら ら ら こ ら ら ら ら こ ら ら ら ら ら ら ら ら ら ら ら ら ら	、 光タン 融合タ、 米を持つので、長派 が 相対的な 蛍光強度 Fair ++++ Bright ++++ Bright	575/50、610、 ました。 文プク 文プク 文プク 文プク マク マク マク マク マク マク マク マク マク	ニドで固定し、Zeis 640/50フィルター ブ質作第 ブダイク質でのモ タンパク質でのモ レポーター としての利用 Fair +++ Excellent +++++ Good ++++	ss Axioskop顕得 -セットを用いて着 こータリングをお さにはすべて単量体で さしての利用 Excellent +++++
注意すべきのでは、このでは、このでは、このでは、このでは、このでは、このでは、このでは、こ	()鮮や、 、て単 、、て単 、、この高い適合 の高い適合 かはGFPに似い 、 RET解析(、ラインアッフ 、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、	かな 上 上 上 上 上 上 上 上 上 上 上 上 に も 有 用 た 緑 色の自家 蛍 こ も 使 用 可 能 こ ち ら 2 こ ち ら 2 こ ち ら 2 こ ち ら 2 こ ち ら 2 こ ち ら 2 こ ち ら 2 こ ち ら 2 こ ら ら 2 こ ら ら 2 こ ら ろ こ ら こ ら こ こ こ ち ら 2 こ ち ら 2 こ ち ら 2 こ ら ら こ こ こ ろ い こ う ら ら こ こ う ち ら こ ら こ ら こ こ こ こ い い こ う ら こ ら こ こ こ こ こ い い こ ら こ ら こ ら こ ら こ こ ら こ こ こ こ こ ら こ ら こ ら こ ら こ ら こ ら こ ら こ ら こ ら こ ら こ ら こ ら こ ら こ ら こ ら こ ら こ ら こ ら ら ら ら ら ら ら ら ら ら こ ら こ ら こ ら こ ら こ ら こ ら こ ら こ ら こ ら ら こ こ こ こ こ こ こ こ こ こ こ こ こ	また また また また また また また また また また	575/50、610、 ました。 タ長赤色蛍光:	ニドで固定し、Zeis 640/50フィルター ゴロ(1) ゴロ(1) ブロ(1) <td>ss Axioskop顕 -セットを用いて こータリングをお さはすべて単量体で 融合タンパク としての利用</td>	ss Axioskop顕 -セットを用いて こータリングをお さはすべて単量体で 融合タンパク としての利用