# tdTomato-Our Brightest Red Fluorescent Protein

An exceptional tool for imaging applications

- Extremely bright
- Highly versatile
- Successful for in vivo imaging

Clontech is now offering **tdTomato Vectors** encoding tandem dimer (td) Tomato, a red fluorescent protein developed in Dr. Roger Tsien's lab. It was derived from a monomeric mutant of DsRed, by several rounds of directed mutagenesis (1), and is detectable by DsRed antibodies (Figure 1).

### Engineered for Brightness and Stability

tdTomato is a genetic fusion of two copies of the dTomato gene (2) which was specifically designed for low aggregation (1). Its tandem dimer structure plays an important role in the exceptional brightness of tdTomato (Table I). Its excitation and emission maxima occur at 554 nm and 581 nm, respectively (1). Because tdTomato forms an intramolecular dimer, it behaves like a monomer, and has been used successfully for N- and C- terminal fusions. It shows excellent photostability and its half-time ( $t_{0.5}$ ) for maturation is one hour at 37°C (1).

## outstanding In vivo Imaging

tdTomato's emission wavelength and brightness make it ideal for live animal imaging studies. In one xenograft mouse model of metastatic breast cancer, tdTomato was easily detected as deep as 1 cm below the surface, and extremely small lesions could be detected and tracked over time (3). A second model used tdTomato to quantify



Figure 1. Western blot detection of tdTomato. HEK 293 cells were transiently transfected with mammalian expression vectors encoding the indicated fluorescent proteins, and lysates from the equivalent of 35,000 cells/ well were analyzed by Western blot using either DsRed Monoclonal Antibody\* (1:500; Panel A) or DsRed Polyclonal Antibody (1:1,000; Panel B). Lane 1: Control (untransfected cells). Lane 2: tdTomato. Lane 3: mCherry. Lane 4: DsRed-Express. Lane 5: DsRed-Monomer. Lane 6: ZsGreen1.

\* Does not detect DsRed-Monomer

breast cancer tumor growth in response to target gene activation (4).

Transgenic mouse models have also been developed, including one where tdTomato was used as a reporter for Cre recombination. This model was also useful as a tool for cell lineage tracing, transplantation studies, and analysis of cell morphology *in vivo* (5). tdTomato has also been used very effectively in fusion protein applications (6) and as a promoter reporter (7).

The brightness, photostability, and established uses for tdTomato make it an ideal fluorescent protein for your next imaging application.

| Product       | Size          | Cat. No.      |     |
|---------------|---------------|---------------|-----|
| ptdTomato Ve  | ctor          |               | NEW |
|               | 20 µg         | 632531        |     |
| ptdTomato-N   | 1 Vector      |               | NEW |
|               | 20 µg         | 632532        |     |
| ptdTomato-C1  | l Vector      |               | NEW |
|               | 20 µg         | 632533        |     |
| pCMV-tdToma   | ato Vector    |               | NEW |
|               | 20 µg         | 632534        |     |
| pmCherry Ve   | ctor          |               |     |
|               | 20 µg         | 632522        |     |
| pmCherry-N1   | Vector        |               |     |
|               | 20 µg         | 632523        |     |
| pmCherry-C1   | Vector        |               |     |
|               | 20 µg         | 632524        |     |
| pmCherry-1 V  | /ector        |               |     |
|               | 20 µg         | 632525        |     |
| Living Colors | DsRed Monocl  | onal Antibody |     |
|               | 20 µl         | 632393        |     |
|               | 200 µl        | 632392        |     |
| Living Colors | DsRed Polyclo | nal Antibody  |     |
|               | 100 µl        | 632496        |     |

#### Notice to Purchaser

Please see the CMV Sequence and Fruit Fluorescent Proteins licensing statements on page 25.

#### References

- Shaner, N. C. et al. (2004) Nature Biotechnol. 22(12):1567–1572.
- Campbell, R. E. et al. (2002) Proc. Natl. Acad. Sci. USA 99(12):7877–7882.
- Winnard Jr., P. T. *et al.* (2006) *Neoplasia* 8(10):796–806.
- Johnstone, C. N. *et al.* (2008) *Mol. Cell Biol.* 28(2):687–704.
- Muzumdar, M. D. et al. (2007) Genesis 45(9):593–605.
- Bjørkøy, G. *et al.* (2005) *J. Cell Biol.* 171(4):603–614.
- Alandete-Saez, M. *et al.* (2008) *Mol. Plant* 1(4):586–598.

| Table I: Fluorescent Protein Properties1 |                               |                             |                                                                               |                                  |                                             |                           |                                               |                                         |  |  |  |
|------------------------------------------|-------------------------------|-----------------------------|-------------------------------------------------------------------------------|----------------------------------|---------------------------------------------|---------------------------|-----------------------------------------------|-----------------------------------------|--|--|--|
| Fluorescent<br>Protein                   | Excitation<br>Maximum<br>(nm) | Emission<br>Maximum<br>(nm) | Extinction<br>Coefficient<br>Per Chain<br>(M <sup>-1</sup> cm <sup>-1</sup> ) | Fluorescence<br>Quantum<br>Yield | Brightness<br>of Fully<br>Mature<br>Protein | Brightness<br>(% of EGFP) | t <sub>0.5</sub> for<br>Maturation<br>at 37°C | t <sub>o.5</sub> for<br>Bleach<br>(sec) |  |  |  |
| tdTomato                                 | 554                           | 581                         | 138,000                                                                       | 0.69                             | 95,220                                      | 283%                      | 1 hr                                          | 70                                      |  |  |  |
| mCherry                                  | 587                           | 610                         | 72,000                                                                        | 0.22                             | 15,840                                      | 47%                       | 15 min                                        | 68                                      |  |  |  |
| EGFP                                     | 484                           | 510                         | 56,000                                                                        | 0.60                             | 33,600                                      | 100%                      |                                               | 115                                     |  |  |  |

1 Shaner, N. C. et al. (2004) Nature Biotechnol. 22(12):1567–1572.