Nanokicking法によるヒト骨髄由来間葉系幹細胞を用いた骨芽細胞への分化誘導法で使用
Nikukar H, Reid S, Tsimbouri PM, Riehle MO, Curtis AS, Dalby MJ.
Osteogenesis of mesenchymal stem cells by nanoscale mechanotransduction. ACS Nano. Mar 26, (2013) ;7(3):2758-2767.
骨再生研究でBMP-7との共移植としてヒト骨髄由来間葉系幹細胞を使用
Sandy Eap, Laetitia Keller, Jessica Schiavi, Olivier Huck, Leandro Jacomine, Florence Fioretti, Christian Gauthier, Victor Sebastian, Pascale Schwinté, Nadia Benkirane-Jessel
A living thick nanofibrous implant bifunctionalized with active growth factor and stem cells for bone regeneration. Int J Nanomedicine. (2015); 10: 1061-1075.
間葉系幹細胞が神経分化、血管新生に関与する因子を分泌する際、細胞由来の影響を調べるため、ヒト骨髄由来間葉系幹細胞を使用
Hsieh JY, Wang HW, Chang SJ, Liao KH, Lee IH, Lin WS, Wu CH, Lin WY, Cheng SM.
Mesenchymal stem cells from human umbilical cord express preferentially secreted factors related to neuroprotection, neurogenesis, and angiogenesis. PLoS One. Aug (2013) 22;8(8):e72604.
BAIMP1が骨髄由来間葉系幹細胞を増殖させるメカニズムの研究で、ヒト骨髄由来間葉系幹細胞を使用
Kim SY, Son WS, Park MC, Kim CM, Cha BH, Yoon KJ, Lee SH, Park SG.
ARS-interacting multi-functional protein 1 induces proliferation of human bone marrow-derived mesenchymal stem cells by accumulation of β-catenin via fibroblast growth factor receptor 2-mediated activation of Akt. Stem Cells Dev. Oct (2013) 1;22(19):2630-2640.
軟骨分化におけるintegrin β8の役割の研究で、ヒト骨髄由来間葉系幹細胞を使用
LaPointe VL, Verpoorte A, Stevens MM.
The changing integrin expression and a role for integrin β8 in the chondrogenic differentiation of mesenchymal stem cells. PLoS One. Nov 27 (2013);8(11):e82035
ヒト汗腺間質由来幹細胞と骨髄由来間葉系幹細胞のタンパク発現と分化能力の違いを調べるため、ヒト骨髄由来間葉系幹細胞を使用
Nagel S, Rohr F, Weber C, Kier J, Siemers F, Kruse C, Danner S, Brandenburger M, Matthiessen AE.
Multipotent nestin-positive stem cells reside in the stroma of human eccrine and apocrine sweat glands and can be propagated robustly in vitro. PLoS One. Oct 24 (2013) ;8(10):e78365.
RGD-グリコプロテインのヒト間葉系幹細胞の骨形成における役割の研究で、ヒト骨髄由来間葉系幹細胞を使用
Schwab EH, Halbig M, Glenske K, Wagner AS, Wenisch S, Cavalcanti-Adam EA.
Distinct effects of RGD-glycoproteins on Integrin-mediated adhesion and osteogenic differentiation of human mesenchymal stem cells. Int J Med Sci. Nov 9 (2013);10(13):1846-1859
凝固因子の発現解析の対象細胞のひとつとして、ヒト骨髄由来間葉系幹細胞を使用
Dashty M, Akbarkhanzadeh V, Zeebregts CJ, Spek CA, Sijbrands EJ, Peppelenbosch MP, Rezaee F.
Characterization of coagulation factor synthesis in nine human primary cell types. Sci Rep. (2012);2:787
間葉系幹細胞の骨形成および脂肪生成におけるox-PAPCsの役割の研究で、ヒト骨髄由来間葉系幹細胞を使用
Valenti MT, Garbin U, Pasini A, Zanatta M, Stranieri C, Manfro S, Zucal C, Dalle Carbonare L.
Role of ox-PAPCs in the differentiation of mesenchymal stem cells (MSCs) and Runx2 and PPARγ2 expression in MSCs-like of osteoporotic patients. PLoS One. (2011);6(6):e20363
【MSC-UC】
in vitro及びin vivoでの神経再生研究で、ヒト臍帯マトリックス由来間葉系幹細胞を使用
Pereira T, Gärtner A, Amorim I, Almeida A, Caseiro AR, Armada-da-Silva PA, Amado S, Fregnan F, Varejão AS, Santos JD, Bartolo PJ, Geuna S, Luís AL, Mauricio AC.
Promoting nerve regeneration in a neurotmesis rat model using poly(DL-lactide-ε-caprolactone) membranes and mesenchymal stem cells from the Wharton's jelly: in vitro and in vivo analysis. Biomed Res Int. (2014);2014:302659
MSC培養培地の血清として臍帯血由来の血漿を検討した際に、ヒト臍帯マトリックス由来間葉系幹細胞を使用
Pereira T, Ivanova G, Caseiro AR, Barbosa P, Bártolo PJ, Santos JD, Luís AL, Maurício AC.
MSCs conditioned media and umbilical cord blood plasma metabolomics and composition. PLoS One. Nov 25 (2014);9(11):e113769.
慢性皮膚創傷の治療研究で、ヒト臍帯マトリックス由来間葉系幹細胞を使用
Ribeiro J, Pereira T, Amorim I, Caseiro AR, Lopes MA, Lima J, Gartner A, Santos JD, Bártolo PJ, Rodrigues JM, Mauricio AC, Luís AL.
Cell therapy with human MSCs isolated from the umbilical cord Wharton jelly associated to a PVA membrane in the treatment of chronic skin wounds. Int J Med Sci. Jul 11 (2014);11(10):979-987.
再生医療用3次元培養の足場剤研究で、ヒト臍帯マトリックス由来間葉系幹細胞を使用
Katsen-Globa A, Meiser I, Petrenko YA, Ivanov RV, Lozinsky VI, Zimmermann H, Petrenko AY.
Towards ready-to-use 3-D scaffolds for regenerative medicine: adhesion-based cryopreservation of human mesenchymal stem cells attached and spread within alginate-gelatin cryogel scaffolds. J Mater Sci Mater Med. Mar (2014);25(3):857-871.
TNF-αが造血前駆細胞に与える影響に関する研究で、ヒト臍帯マトリックス由来間葉系幹細胞を使用
Mizrahi K, Stein J, Yaniv I, Kaplan O, Askenasy N.
TNF-α has tropic rather than apoptotic activity in human hematopoietic progenitors: involvement of TNF receptor-1 and caspase-8. Stem Cells. Jan (2013);31(1):156-166.
乳癌腫瘍形成におけるヒト臍帯間葉系幹細胞の研究として、ヒト臍帯マトリックス由来間葉系幹細胞を使用
Chao KC, Yang HT, Chen MW.
Human umbilical cord mesenchymal stem cells suppress breast cancer tumourigenesis through direct cell-cell contact and internalization. J Cell Mol Med. Aug (2012);16(8):1803-1815.
ヒト間葉系幹細胞の神経分化をリアルタイムにECISでモニタリングするため、ヒト臍帯マトリックス由来間葉系幹細胞を使用
Park HE, Kim D, Koh HS, Cho S, Sung JS, Kim JY.
Real-time monitoring of neural differentiation of human mesenchymal stem cells by electric cell-substrate impedance sensing. J Biomed Biotechnol. (2011);2011:485173.
【MSC-AT】
プロスタグランジン等によるヒト脂肪組織由来間葉系幹細胞を用いた褐色脂肪細胞への分化誘導で使用
Vegiopoulos A, Müller-Decker K, Strzoda D, Schmitt I, Chichelnitskiy E, Ostertag A, Berriel Diaz M, Rozman J, Hrabe de Angelis M, Nüsing RM, Meyer CW, Wahli W, Klingenspor M, Herzig S.
Cyclooxygenase-2 controls energy homeostasis in mice by de novo recruitment of brown adipocytes. Science. May 28; (2010) 328(5982):1158-1161
JAKシグナル伝達阻害剤によるヒト脂肪組織由来間葉系幹細胞を用いた褐色脂肪細胞への分化誘導で使用
Moisan A, Lee YK, Zhang JD, Hudak CS, Meyer CA, Prummer M, Zoffmann S, Truong HH, Ebeling M, Kiialainen A, Gérard R, Xia F, Schinzel RT, Amrein KE, Cowan CA.
White-to-brown metabolic conversion of human adipocytes by JAK inhibition. Nat Cell Biol. Jan;(2015) 17(1):57-67
HCV感染の調節因子であるMicroRNAの研究で、ヒト脂肪組織由来間葉系幹細胞を分化させて肝細胞様細胞として使用
Choi JE1, Hur W1, Kim JH1, Li TZ1, Lee EB1, Lee SW1, Kang W2, Shin EC2, Wakita T3, Yoon SK1.
MicroRNA-27a modulates HCV infection in differentiated hepatocyte-like cells from adipose tissue-derived mesenchymal stem cells. PLoS One. May 13; (2014) 9(5):e91958.
骨分化誘導においてNodel (TGF-βファミリー)とBMPとのキメラ遺伝子発現系を用いた研究で、ヒト脂肪組織由来間葉系幹細胞を使用
Luis Esquivies, Alissa Blackler, Macarena Peran, Concepcion Rodriguez-Esteban, Juan Carlos Izpisua Belmonte, Evan Booker, Peter C. Gray, Chihoon Ahn, Witek Kwiatkowski, Senyon Choe.
Designer Nodal/BMP2 Chimeras Mimic Nodal Signaling, Promote Chondrogenesis, and Reveal a BMP2-like Structure. J Biol Chem. Jan 17; (2014) 289(3): 1788-1797.
ヒ素が脂肪細胞分化に与える影響に関する研究で、ヒト脂肪組織由来間葉系幹細胞を使用
Klei LR, Garciafigueroa DY, Barchowsky A.
Arsenic activates endothelin-1 Gi protein-coupled receptor signaling to inhibit stem cell differentiation in adipogenesis. Toxicol Sci. Feb (2013);131(2):512-520.
軟骨分化においてActivinとBMPとのキメラ遺伝子発現系を用いた研究で、ヒト脂肪組織由来間葉系幹細胞を使用
Peran M, Ruiz S, Kwiatkowski W, Marchal JA, Yang SL, Aranega A, Choe S, Izpisua Belmonte JC.
Activin/BMP2 chimeric ligands direct adipose-derived stem cells to chondrogenic differentiation. Stem Cell Res. May (2013);10(3):464-476.
iPS細胞樹立や維持培養における脂肪由来細胞の役割の研究で、ヒト脂肪組織由来間葉系幹細胞を使用
Sugii S, Kida Y, Kawamura T, Suzuki J, Vassena R, Yin YQ, Lutz MK, Berggren WT, Izpisúa Belmonte JC, Evans RM.
Human and mouse adipose-derived cells support feeder-independent induction of pluripotent stem cells. Proc Natl Acad Sci U S A. Feb 23 (2010);107(8):3558-3563.
参考文献
Cho JS, Park JH, Kang JH, Kim SE, Park IH, Lee HM.
Isolation and characterization of multipotent mesenchymal stem cells in nasal polyps. Exp Biol Med (Maywood). Feb;(2015) 240(2):185-193
El-Sayed KM, Paris S, Graetz C, Kassem N, Mekhemar M, Ungefroren H, Fändrich F, Dörfer C.
Isolation and characterisation of human gingival margin-derived STRO-1/MACS+ and MACS− cell populations. Int J Oral Sci. Jun 26 (2015);7(2):80-88
Fuhrmann G, Serio A, Mazo M, Nair R, Stevens MM.
Active loading into extracellular vesicles significantly improves the cellular uptake and photodynamic effect of porphyrins. J Control Release. May 10 (2015);205:35-44
Jae-Hyeok Lee, Wooyoung Shim, Najeeb Choolakadavil Khalid, Won-Seok Kang, Minsu Lee, Hyo-Sop Kim, Je Choi, Gwang Lee, Jae-Ho Kim
Random Networks of Single-Walled Carbon Nanotubes Promote Mesenchymal Stem Cell’s Proliferation and Differentiation ACS Appl. Mater. Interfaces, (2015), 7 (3), pp 1560-1567
Pemberton GD, Childs P, Reid S, Nikukar H, Tsimbouri PM, Gadegaard N, Curtis AS, Dalby MJ.
Nanoscale stimulation of osteoblastogenesis from mesenchymal stem cells: nanotopography and nanokicking. Nanomedicine (Lond). Mar (2015);10(4):547-560
Seras-Franzoso J, Tsimbouri PM, Burgess KV, Unzueta U, Garcia-Fruitos E, Vazquez E, Villaverde A, Dalby MJ.
Topographically targeted osteogenesis of mesenchymal stem cells stimulated by inclusion bodies attached to polycaprolactone surfaces. Nanomedicine (Lond). Feb (2014);9(2):207-220.
L.A. Bosworth, S.R. Rathbone, R.S. Bradley, and S.H. Cartmell
Dynamic loading of electrospun yarns guides mesenchymal stem cells towards a tendon lineage J Mech Behav Biomed Mater. Nov (2014); 39: 175-183.
Marin-Bañasco C, Suardíaz García M, Hurtado Guerrero I, Maldonado Sánchez R, Estivill-Torrús G, Leyva Fernández L, Fernández Fernández O.
Mesenchymal properties of SJL mice-stem cells and their efficacy as autologous therapy in relapsing-remitting multiple sclerosis model Stem Cell Res Ther. Dec 12 (2014);5(6):134
Alexandre N, Ribeiro J, Gärtner A, Pereira T, Amorim I, Fragoso J, Lopes A, Fernandes J, Costa E, Santos-Silva A, Rodrigues M, Santos JD, Maurício AC, Luís AL.
Biocompatibility and hemocompatibility of polyvinyl alcohol hydrogel used for vascular grafting--in vitro and in vivo studies. J Biomed Mater Res A. Dec (2014);102(12):4262-4275
Fawzy El-Sayed KM, Dörfer C, Ungefroren H, Kassem N, Wiltfang J, Paris S.
Effect of Emdogain enamel matrix derivative and BMP-2 on the gene expression and mineralized nodule formation of alveolar bone proper-derived stem/progenitor cells. J Craniomaxillofac Surg. (2014) Jul;42(5):568-576.
Loibl M, Binder A, Herrmann M, Duttenhoefer F, Richards RG, Nerlich M, Alini M, Verrier S.
Direct cell-cell contact between mesenchymal stem cells and endothelial progenitor cells induces a pericyte-like phenotype in vitro. Biomed Res Int. (2014);2014:395781
Mizrahi K, Kagan S, Stein J, Yaniv I, Zipori D, Askenasy N.
Resistance of hematopoietic progenitors to Fas-mediated apoptosis is actively sustained by NFκB with a characteristic transcriptional signature. Stem Cells Dev. Mar 15 (2014);23(6):676-686.
Wang J, Guo X, Lui M, Chu PJ, Yoo J, Chang M, Yen Y.
Identification of a distinct small cell population from human bone marrow reveals its multipotency in vivo and in vitro. PLoS One. Jan 17 (2014);9(1):e85112
Jiang D, Qi Y, Walker NG, Sindrilaru A, Hainzl A, Wlaschek M, MacNeil S, Scharffetter-Kochanek K. Jiang D, Qi Y, Walker NG, Sindrilaru A, Hainzl A, Wlaschek M, MacNeil S, Scharffetter-Kochanek K.
The effect of adipose tissue derived MSCs delivered by a chemically defined carrier on full-thickness cutaneous wound healing. Biomaterials. Mar (2013);34(10):2501-2515.
Seras-Franzoso J, Peebo K, Luis Corchero J, Tsimbouri PM, Unzueta U, Rinas U, Dalby MJ, Vazquez E, García-Fruitós E, Villaverde A.
A nanostructured bacterial bioscaffold for the sustained bottom-up delivery of protein drugs. Nanomedicine (Lond). Oct (2013);8(10):1587-1599.
Wang C, Yuan X, Yang S.
IFT80 is essential for chondrocyte differentiation by regulating Hedgehog and Wnt signaling pathways. Exp Cell Res. Mar 10 (2013);319(5):623-632.
Abumaree MH, Al Jumah MA, Kalionis B, Jawdat D, Al Khaldi A, Abomaray FM, Fatani AS, Chamley LW, Knawy BA.
Human placental mesenchymal stem cells (pMSCs) play a role as immune suppressive cells by shifting macrophage differentiation from inflammatory M1 to anti-inflammatory M2 macrophages. Stem Cell Rev. Oct (2013);9(5):620-641.
Narvaez CJ, Simmons KM, Brunton J, Salinero A, Chittur SV, Welsh JE.
Induction of STEAP4 correlates with 1,25-dihydroxyvitamin D3 stimulation of adipogenesis in mesenchymal progenitor cells derived from human adipose tissue. J Cell Physiol. Oct (2013);228(10):2024-2036
Schmidt A, Scherer M, Thiermann H, Steinritz D.
Mesenchymal stem cells are highly resistant to sulfur mustard. Chem Biol Interact. Dec 5 (2013);206(3):505-511.
Stubbendorff M, Deuse T, Hua X, Phan TT, Bieback K, Atkinson K, Eiermann TH, Velden J, Schröder C, Reichenspurner H, Robbins RC, Volk HD, Schrepfer S.
Immunological properties of extraembryonic human mesenchymal stromal cells derived from gestational tissue. Stem Cells Dev. Oct 1 (2013);22(19):2619-2629
Jeong IH, Shetty AA, Kim SJ, Jang JD, Kim YJ, Chung YG, Choi NY, Liu CH.
Autologous collagen-induced chondrogenesis using fibrin and atelocollagen mixture. Cells Tissues Organs. (2013);198(4):278-288
Klein D, Benchellal M, Kleff V, Jakob HG, Ergün S.
Hox genes are involved in vascular wall-resident multipotent stem cell differentiation into smooth muscle cells. Sci Rep. Oct 22 (2013);3:2178.
Prat A, Karginova O, Parker JS, Fan C, He X, Bixby L, Harrell JC, Roman E, Adamo B, Troester M, Perou CM.
Characterization of cell lines derived from breast cancers and normal mammary tissues for the study of the intrinsic molecular subtypes. Breast Cancer Res Treat. Nov (2013);142(2):237-255.
Jullien N, Maudinet A, Leloutre B, Ringe J, Häupl T, Marie PJ.
Downregulation of ErbB3 by Wnt3a contributes to wnt-induced osteoblast differentiation in mesenchymal cells. J Cell Biochem. Jun (2012);113(6):2047-2056
Saidak Z, Haÿ E, Marty C, Barbara A, Marie PJ.
Strontium ranelate rebalances bone marrow adipogenesis and osteoblastogenesis in senescent osteopenic mice through NFATc/Maf and Wnt signaling. Aging Cell. Jun (2012);11(3):467-474.
Fawzy El-Sayed KM, Paris S, Becker S, Kassem N, Ungefroren H, Fändrich F, Wiltfang J, Dörfer C.
Isolation and characterization of multipotent postnatal stem/progenitor cells from human alveolar bone proper. J Craniomaxillofac Surg. Dec (2012);40(8):735-42.
Fawzy El-Sayed KM, Paris S, Becker ST, Neuschl M, De Buhr W, Sälzer S, Wulff A, Elrefai M, Darhous MS, El-Masry M, Wiltfang J, Dörfer CE.
Periodontal regeneration employing gingival margin-derived stem/progenitor cells: an animal study. J Clin Periodontol. Sep (2012);39(9):861-870.
Proksch S, Steinberg T, Stampf S, Schwarz U, Hellwig E, Tomakidi P.
Crosstalk on cell behavior in interactive cocultures of hMSCs with various oral cell types. Tissue Eng Part A. Dec (2012);18(23-24):2601-2610.
Sternberg H, Murai JT, Erickson IE, Funk WD, Das S, Wang Q, Snyder E, Chapman KB, Vangsness CT Jr, West MD.
A human embryonic stem cell-derived clonal progenitor cell line with chondrogenic potential and markers of craniofacial mesenchyme. Regen Med. Jul (2012);7(4):481-501
Tan Z, Wortman M, Dillehay KL, Seibel WL, Evelyn CR, Smith SJ, Malkas LH, Zheng Y, Lu S, Dong Z.
Small-molecule targeting of proliferating cell nuclear antigen chromatin association inhibits tumor cell growth. Mol Pharmacol. Jun (2012);81(6):811-819.
Datta I, Mishra S, Mohanty L, Pulikkot S, Joshi PG.
Neuronal plasticity of human Wharton's jelly mesenchymal stromal cells to the dopaminergic cell type compared with human bone marrow mesenchymal stromal cells. Cytotherapy. Sep (2011);13(8):918-932.
Klein D, Weisshardt P, Kleff V, Jastrow H, Jakob HG, Ergün S.
Vascular wall-resident CD44+ multipotent stem cells give rise to pericytes and smooth muscle cells and contribute to new vessel maturation. PLoS One. (2011);6(5):e20540
Ramgolam K, Lauriol J, Lalou C, Lauden L, Michel L, de la Grange P, Khatib AM, Aoudjit F, Charron D, Alcaide-Loridan C, Al-Daccak R.
Melanoma spheroids grown under neural crest cell conditions are highly plastic migratory/invasive tumor cells endowed with immunomodulator function. PLoS One. Apr (2011) 15;6(4):e18784
Sévère N, Miraoui H, Marie PJ
The Casitas B lineage lymphoma (Cbl) mutant G306E enhances osteogenic differentiation in human mesenchymal stromal cells in part by decreased Cbl-mediated platelet-derived growth factor receptor alpha and fibroblast growth factor receptor 2 ubiquitination. J Biol Chem. Jul 8 (2011) ;286(27):24443-24450.
McNamara LE, Sjöström T, Burgess KE, Kim JJ, Liu E, Gordonov S, Moghe PV, Meek RM, Oreffo RO, Su B, Dalby MJ.
Skeletal stem cell physiology on functionally distinct titania nanotopographies. Biomaterials. Oct (2011);32(30):7403-7410.
Lekva T, Bollerslev J, Kristo C, Olstad OK, Ueland T, Jemtland R.
The glucocorticoid-induced leucine zipper gene (GILZ) expression decreases after successful treatment of patients with endogenous Cushing's syndrome and may play a role in glucocorticoid-induced osteoporosis. J Clin Endocrinol Metab. Jan (2010);95(1):246-255